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Abstract

When large government programs are introduced, programmatic imperatives often prevent the

ideal randomized evaluation. We leverage detailed administrative data and a combination of both

random and quasi random variation to generate a plausible measure of impact despite programmatic

constraints. We study the scale up of an incentive for immunization program in Sindh province

in Pakistan where seven of the lowest immunization performing districts were chosen to receive the

program with the order of rollout randomized. We calculate the probability a district is included in the

program by permuting across alternative selection criteria for the included districts and conducting
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a weighted Callaway Sant’Anna estimation which includes data from 5 districts not included in the

randomization of the program. This allows us to examine long-term impact of the program even

though the rollout lasts only 7 months. Bayesian (or nonparametric) smoothing sharply improves the

precision of estimates. Immunization rates for Pentavalent-1 and Measles-1 both rise by almost 15%,

almost identical to the previous small scale randomized pilot. Exploiting individual level data we

show the incentive increased enrolment of marginal children by 16% although few of these children

persisted throughout the schedule while the incentive induced those already enrolled to persist for

longer.

JEL codes: D04, I12, C55, H75, I18, C9, C11
Keywords: Childhood immunization, incentives, health behaviour, big administrative data, scale-up.
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1 Introduction

The introduction of large scale government programs is rarely done in a way that maximizes the ability
of researchers to cleanly evaluate them. While a government might be willing to stagger the phase-in
of a program and even randomize the order of phase-in they typically prefer, for administrative ease,
to phase-in at the level of a large unit (like a district or states) and to phase-in quickly (given political
timelines). When programs are targeted at lagging districts/states governments often prefer to use some
rule to determine which receive special support, limiting the scope for randomization. However, it is
important to be able to evaluate these programs given the concern that small-scale or nongovernmental
run pilots may not generate the same impacts as large government run programs.

In this paper, we evaluate the introduction of a large scale government program that faced precisely
these constraints. We use a combination of random and quasi random variation alongside administrative
data and minimal assumptions to generate a plausible measure of impact. We conclude that this hybrid
approach can be useful for measuring impact when the ideal experiment is not possible but administrative
data is available for units outside the randomization frame.

Specifically, we evaluate the impact of a program that provides small incentives to promote childhood
immunization introduced by the Government of Sindh, Pakistan to seven low performing districts in
2022. The phase-in was randomized at the level of the district (and then within district by town) and was
completed within 7 months. We leverage administrative data available for all 30 districts in the province.
We then use both quasi random variation (about which of the 30 potential districts were chosen for the
program) alongside random variation in the timing of phase-in (within the 7 targeted districts). The
seven districts were chosen following a rule: they had low coverage rates of Pentavalent-3 and Measles-
1 vaccines as of the end of August 2021. We assume that the precise selection criteria was one of several
equally plausible alternative selection rules: for example low rates of Pentavalent-2 and Measles-1 in
July 2021 could have been the criteria. We permute over these different selection criteria to calculate the
probability that a district is selected for the program and thus the RCT. We find 5 additional districts with
a greater than 40% probability of being in the program. Including administrative data from these districts
as additional ‘never-treated’ controls, whilst conditioning on the probability of inclusion, increases the
precision of our estimates over a standard seven district RCT. It also allows us to measure the impact of
the program long after the treatment districts have all rolled in. We find a 14.6% and 14.8% increase in
Penta-1 and Measles-1 vaccines as a result of the program, almost identical to the results of the earlier
small scale pilot of the program (Chandir et al 2022).

Our phase-in design necessitates the use of contemporary difference-in-difference methods designed to
address bias. However, these approaches typically reduce potential bias by trading-off efficiency and
can result in imprecise impact estimates. Callaway and Sant’Anna (2021) event-study estimates, for
example, trace out treatment effect dynamics relative to roll-in and estimate the impact of each post-
event time period separately. This means only a fraction of the data is used for a given event-time
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estimate, in our case only 2% of available data is used for a given week’s estimated effect. To address
this we use Bayesian nonparametrics to estimate a latent underlying impact (which moves over time) and
shrink estimates close in event-time space towards each other, pooling information across weeks whilst
avoiding “forbidden” comparisons highlighted by Goodman-Bacon (2021); Borusyak et al. (2024); Sun
and Abraham (2021). This generates smoother and more precise estimates of long run impact (a similar
approach is suggested by Faletto (2023)).

Our study utilizes data from Sindh Zindagi Mehfooz (Safe Life) Electronic Immunisation Registry (also
known as ZM-EIR or SEIR) which collects real-time information on children’s vaccinations administered
in all public and private clinics in the province by scanning a QR code on the child’s immunization
card during vaccine administration.12 The registry is the result of a long term partnership between the
Government of Sindh, and the non-governmental organization Interactive Research and Development
(IRD).3 The registry also allows mobile topup payments to be sent automatically to caregivers when
their child receives an immunization if the vaccine is given within incentive program districts. Outcome
data for this study come from the SEIR registry although independent checks were also performed to
ensure the validity of the SEIR data.

During 2017-2020, a pilot version of the incentive program was evaluated with the objective of identi-
fying the most cost-effective size, method, and structure of incentives (Chandir et al 2022). It found, in
results similar to the companion evaluation in India (Banerjee et al 2021), that a regular small mobile
topup payment was the most cost-effective form of incentive.

The positive outcomes motivated the Government of Sindh to introduce the program to seven low im-
munization districts. It was rolled out in parts of Karachi (East, West, and Central), Kamber, Hyderabad,
Jacobabad and Sujawal, a program area in which there are approximately three million administrations
of the six primary vaccines every year. A small mobile top-up of PKR 200 (USD 1.25) is sent for each
immunization administered to caregivers when the child is vaccinated within the program district.4

For logistical reasons, the program roll-in was staggered: one district adopted the program per month in
random order between January and August 2022. Due to COVID-19 restrictions on large gatherings, not
all vaccinators from each district could be trained at the same time, leading to a town-by-town phase-in
within a district with the order of towns within a district also randomized with a one-week gap. 5

The decision to prioritize the needs of program roll-in over the needs of the evaluation was crucial for the

1 If the card is not available vaccinators find the record by inputting characteristics such as phone number, child name, or
parent name.

2 Vaccinations given by non EPI staff (such as teachers) mobilized during specific vaccination campaigns are not captured
by SEIR.

3 Access to the full SEIR registry is restricted to IRD staff who help maintain the registry on behalf of the Sindh government.
Non-IRD coauthors were able to submit code to be run on the registry and analyze aggregate data. The study had the
approval of the Sindh Government.

4 The amount was later raised to PKR 275.
5 The exception was the first district where the order was not randomized.
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project’s success, but it meant a standard evaluation approach would have been under-powered. The time
variation introduced by the randomized roll-in is modest, with only 1 week between towns and 7 months
between the first and last roll-in. This variation is particularly modest in comparison to the the high
underlying variance in the number of immunizations by week and that the full immunization schedule
for one child lasts between one and two years.6 Many caregivers in a town will not have the chance to
respond to the incentive before the next town is rolled in because their child is not yet eligible for their
next vaccine, and caregivers may take time to learn about and, therefore, respond to the program.

To address these challenges, we combine variation from the randomized phase-in with quasi-random
variation generated from the algorithm for selecting districts into the program. Districts were chosen
if, using data available on September 1 2020, the district fell in the lowest 20th percentile on either
Pentavalent-3 or Measles-1 vaccines. However, the date the data dump was generated and which vaccines
were used to define low vaccination rates are somewhat arbitrary. By calculating which districts would
have been chosen if the selection had used slightly different dates or using different vaccines we can
estimate the probability a district would have been chosen for the program under a range of possible
similar selection criteria. In addition to the 7 districts actually chosen we find 5 additional districts with
a nonzero probability of inclusion. We include these 5 in our estimation and reweight our difference-in-
difference estimates using the inclusion propensity score. The additional 5 districts substantially improve
the precision of our estimates and provide a control group even after the program has fully rolled in
allowing us to estimate longer term impacts.

Because towns are rolled in at different calendar times, a standard two-way fixed effect model with
heterogeneous treatment effects could be biased and introduce negative weights (Borusyak et al., 2024;
de Chaisemartin and D’Haultfœuille, 2020; Sun and Abraham, 2021), therefore to estimate effects we
rely on a modification of Callaway and Sant’Anna (2021)’s estimator where the propensity score enters
directly, justified under a design-based approach, rather than estimated as a function of pre-treatment
covariates. Event study estimates calculate a separate program effect for each period after a town has
been rolled in. The confidence intervals around each individual weekly estimation are large: only 2% of
our data are used for any individual weekly estimate. We therefore use Bayesian estimation techniques
to shrink our estimates and use data more efficiently. We assume there is a latent impact which moves
slowly week to week and this is measured with noise by each individual weekly estimate. Our Bayesian
approach is identical to a nonparametric estimation of this latent variable measured with noise. This
generates a smoother and more precisely estimated impact over time and for the average post intervention
period.

Next, we leverage the rich granularity of the administrative data to relax the parallel trends assumption
by only comparing treated children to control children with the same vaccination due date. We find the
incentive increased enrolment and early vaccines by 30%, although few of these children persisted to the

6 If all immunizations are completed in a timely manner the full schedule can be completed in one year but caregivers receive
the incentive if they bring their child in their first two years of life.
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end of the schedule. The incentive also induced those enrolled prior to the introduction of the incentive
to persist and receive more later vaccines.

Pakistan is well suited to study immunization incentives. It has one of the world’s highest child mortality
rates (74/1000 live births), with 27% of under-5 deaths attributed to vaccine-preventable diseases. Two
out of five children miss out on life-saving vaccines, making Pakistan one of the 10 countries with the
most unvaccinated children (Centre for Disease Control and Prevention, 2023). In Sindh, a province
with an annual birth cohort of 1.7 million, 49% of children aged 12-23 months have received all vaccines
classified as essential (National Institute of Population Studies (2019)).

We contribute to the literature in three ways. First we provide additional evidence to the growing liter-
ature suggesting small incentives tied to immunization can increase immunization rates. While middle-
income countries (MICs) have employed broad income assistance schemes to incentivize immunization
through linking cash transfers to vaccination and consistent clinic attendance, the financial burden im-
posed by these incentives remains unattainable for many low and lower-middle-income countries. How-
ever, much smaller transfers that act more like a nudge have been shown, in pilot studies, to increase
immunization rates in Rajasthan India (Banerjee et al 2010), Kenya (Gibson et al 2017), Karachi, Pak-
istan (Chandir et al 2022), and Haryana India (Banerjee et al 2021). While Banerjee et al was tested at
relatively large scale (nearly 300,000 children), the program is still being refined to make implementation
by the government possible.

Second, we contribute to the literature evaluating how pilot programs fare when scaled up by govern-
ments. Muralidharan and Niehause (2017) document that few RCTs are conducted on large populations
(Gertler and Boyce 2003, Schultze 2004 are examples that are). Even fewer studies document how im-
pacts change when a program is tested at pilot and then at scale: Akram et al 2017 examine the scale
up of a program to support migration in the lean season in Bangladesh; Banerjee et al 2017 discuss the
changes necessary to adapt a pilot program to one that can be implemented at larger scale. We test a
version of the program very similar to the pilot and find very similar impacts between the individually
randomized pilot and the scaled program (evaluated through a clustered RCT). This reflects two oppos-
ing forces: the salience of the program was likely higher in the individualized pilot because the program
was explained in a one-on-one enrollment interview; because it was a clustered RCT, in the scale-up we
are able to capture the impact of the incentive on those who would otherwise never have received a single
vaccine, while the pilot was conducted only on those who had received at least one vaccine.

Finally, we provide two methodological contributions to the difference-in-difference literature, (Athey
and Imbens, 2022; Arkhangelsky et al., 2023). While inverse probability weighting is a standard part
of Callaway Sant’Anna methodology, we propose weighting by the probability of being included in an
experiment based on a clear understanding of the selection criteria and quasi random variation in whether
a unit was included in the randomization. Whilst Gechter and Meager (2021) combine observational and
experimental data across studies to estimate the impacts of conditional cash transfers, we are unaware

6



of other examples where this combination of randomized and quasi randomized variation has been used
to evaluate a specific program in this way. Our second methodological contribution is to show how
Bayesian non-parametrics can be used to improve the precision of modern difference-in-difference ap-
proaches such as Callaway and Sant’Anna event-time estimates by pooling information across weeks
whilst avoiding comparing early to late-treated units.

The remainder of the paper is organized as follows: Section 2 provides some background on study setting
and expansion of the incentive program; Section 3 describes the data sources used, presents descriptive
statistics and discusses the empirical strategy; Section 4 presents the main findings and heterogeneous
treatment effect, Section 6 concludes.

2 Background

2.1 Study Setting: Immunization rates in Pakistan

Despite the cost-effectiveness of early childhood immunization, 25 million children under the age of one
failed to receive the recommended childhood vaccines in 2021, leading to over 1.5 million deaths from
vaccine-preventable diseases (Centre for Disease Control and Prevention, 2023; World Health Organi-
zation, 2023). Eighteen million children received no vaccines at all, with 62% of unvaccinated children
residing in 10 low and middle-income countries, including Pakistan (Centre for Disease Control and
Prevention, 2023). In Pakistan, only 66% of children between the ages of 12 to 23 months received six
primary vaccinations recommended by WHO, and just 51% of children received all age-appropriate vac-
cinations (National Institute of Population Studies, 2019). Furthermore, a significant regional disparity in
vaccination coverage is evident, particularly in Sindh, home to an annual birth cohort of 1.7 million, with
only 49% of children aged 12-23 months receiving all essential vaccines.7 Recently, Pakistan adopted an
Electronic Immunization Registry (EIR), generating high-quality, real-time immunization data for chil-
dren. Sindh was an early adopter of EIRs: with technical support from IRD, the government of Sindh
successfully scaled up an EIR across the entire province between October 2017 and March 2018. The
program is also being scaled up to other provinces in Pakistan, and other countries are adopting simi-
lar registries, providing an opportunity for testing and implementing cost-effective and easily scalable
interventions to boost vaccination rates.

2.2 Scale-up of Mobile Incentive Program

In Karachi, between 2017-2020, Chandir et al. (2022) evaluated the impact of small mobile conditional
cash transfers (mCCT) of varying amounts, design, schedule, and payment methods on childhood im-

7 The immunization rates for other provinces are: Punjab (80%), Azad Jammu and Kashmir (75%), Islamabad (68%), Gilgit
Baltistan (57%), and Khyber Pakhtunkhwa (55%) (National Institute of Population Studies, 2019)
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munization rates in Korangi, Sindh, Pakistan.8 The study design aimed to identify the most effective and
easily scalable program structure for targeting incentives for immunization. The pilot was implemented
in all government immunization clinics and a private birthing center in Korangi town. All children visit-
ing treatment centres were screened for eligibility and enrolled in the program if the child was under two
years old, visiting for one of the three vaccines, including Bacille Calmette-Guerin (BCG), Pentavalent-
1 (Penta-1) or Pentavalent-2 (Penta-2), and the caregiver provided a mobile phone number at the time
of vaccine administration. The participants were randomly allocated to the treatment arms through a
real-time phone-based application, with 1,600 participants enroled in each arm. The program utilized
a study-specific version of the Zindagi Mehfooz electronic immunization registry to trigger payments
when a child enrolled in the study received a vaccine. Chandir et al. (2022) find that mobile phone
top-up payments are more effective than electronic money, and certain payments are more effective than
lottery payments. While higher payments induced more immunizations than lower payments, the differ-
ence was relatively modest. The program increased the full immunization coverage rate at 12 months
and up-to-date coverage at 18 months at USD 23 per additional fully immunized child (USD 0.8-2.4 per
immunization visit) (Chandir et al., 2022).

In response to these promising findings, the Government of Sindh, Pakistan, in collaboration with In-
teractive Research and Development (IRD), introduced the conditional incentive program at scale9. The
most cost-effective policy combination was adopted from the pilot study: a certain payment delivered
through mobile top-ups, with a flat schedule and a payment slightly above the low payment in Chandir
et al. (2022). Specifically, caregivers of children age 0-23 months receive a mobile top-up payment of
PKR 200 ($1.25)10 for any of six targeted chidhood immunizations11 received at a fixed site (whether
government or private clinic) or through vaccinator outreach in the treated district12. A child is eligible
for an incentive if they receive a vaccine in the program district, regardless of their enrollment district.13

The program leverages Sindh’s existing system of Electronic Immunization Registry (SEIR, known as
ZM-EIR) to send incentive payments. The SEIR records all vaccinations administered in the Province.
The vaccines are registered in the registry when the vaccinator scans the QR code on an immunization

8 The study comprised of seven components, consisting of five conditional cash transfer (mCCT) arms, one SMS reminder
arm, and one pure control group. The five mCCT arms had different incentive amounts (ranging from USD 5 to 15 per
fully immunized child), payment schedules (flat versus escalating payments over the schedule), structures (certain versus
lottery payments), and payment methods (airtime or mobile money).

9 The scale-up of the mCCT program was funded by GiveWell.
10 We used 160 PKR = 1 USD exchange rate as of August 1, 2021,

.
11 The six primary vaccines are BCG, Pentavalent-1, Pentavalent-2, Pentavalent-3, Measles-1 and Measles-2. If the standard

vaccine schedule is followed, one of the six incentivized vaccines is administered on each of the scheduled visits so that
caregivers get one and only one incentive per visit. If an incentivized vaccine is out of stock, a child may receive other
vaccines without receiving an incentive. This is likely to happen in roughly 1 out of 8% of cases. For detailed vaccine
schedule, see section A4).

12 Note: the pilot program was tested across private and government clinics.
13 We discuss the potential for caregivers from other districts to cross district borders to be eligible for incentives in the

sections below.
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form with their phone or registers them manually if the caregiver does not have the card (see figures A3
and A4).14

15 Once the vaccination is registered in program districts, an automatic payment in the form of a mobile
top-up is triggered to the phone number provided by the caregiver. The program was advertized widely
through community members and vaccination staff who informed caregivers about the incentives. Initial
communication activities included social media and cable TV advertisements, branded local vehicles,
promotional SMS, print advertisement materials, and cards with program information.

The program was introduced in 7 districts, including three in Karachi (East, West, and Central), Kamber,
Hyderabad, Jacobabad, and Sujawal. The selected districts were in the bottom 20% of districts for
immunization coverage rates for either Pentavalent-3 or Measles-1 vaccines in the 2020 birth cohort,
as measured by surviving annual infants in the ZM-EIR as of August 31, 2021 ( program and non-
program districts presented in Figure (A1)).16 Figure (1) provides details of the study timeline. For
logistical reasons, the introduction was staggered, with one district per month rolled into the program
between January and August 2022. For the evaluation of the program, the district order was randomized.
However, because of the restrictions imposed due to COVID-19, the training of the vaccinators could
not be administered at the district level but had to be administered at the town level. Hence, within
each district, each town was enrolled in the program with equal spacing, ensuring that enrollment takes
place weekly throughout the month. Again, the order of roll-in at the town level was randomized with
University of Chicago researchers prescribing the randomized order and therefore introduction date in
each district.17 The one exception was the first district, Karachi East, where towns were rolled out
in a nonrandom order. Figure (A2) provides details of the randomized order and the actual dates of
introduction of the program for each town and district. The implementation followed the randomization
order closely, with only minor deviations (four out of five towns of district Karachi Central, two out of
seven towns of district Kambar, and one out of four towns of district Hyderabad). The roll-in order was
maintained, and there was only a 1-3 day difference in launch dates from the originally specified plan.18

The scale-up varied from the pilot program evaluated by Chandir et al. (2022) in three main aspects.
First, all caregivers in a town became eligible for payments under the program simultaneously, which
made it possible to advertise the program in the community. Caregivers were not individually informed

14 A child can be found in the register by looking up the clinic, caregivers phone number, the child’s name, parents name and
birthdate).

15 There is pressure on vaccinators to reach vaccination targets, as measured by the number of children registered or vaccines
administered in the system, so most children who come in without a card are put into the registry even though it takes time
to find them.

16 Note: the district where the pilot was carried out was not in the seven scale up districts as it had marginally higher immu-
nization rates but was included in one of the control districts.

17 Rachel Glennerster oversaw the randomization which was carried out by University of Chicago staff without involvement
of IRD coauthors or staff.

18 The main reason for the deviations was the involvement of health staff (including vaccinators and the respective District
Health Officers) in the province-wide polio campaigns, crash immunization activities, and immunization week. They were
unavailable for program launch on the specified dates, but the deviations did not impact the original program’s design.
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of the incentive amount by study staff (as they were in the pilot) as this role was given to vaccinators.
Second, the payment amount was not specifically included in text messages sent to caregivers to remind
them of their child’s immunization due date (for reference, see Figure A5).19 Finally, due to inflation in
Pakistan, the real value of the incentive varied over the course of the program.

Immunization Records Observed

July 2019

Selection of program districts

Sept 2021

Program roll-in

Jan - Aug 2022

1 district rolled in per month

Jan - Aug 2022

Each town rolled in within district

Jan - Aug 2022

Immunization Records Observed

Dec 2023

Figure 1: Timeline of Immunization Records and Program Roll-in

3 Empirical strategy

3.1 Data

The analysis in this paper leverages the unique administrative child-level immunisation records from the
ZM-EIR registry, which is the same registry used to administer the incentive payments. All vaccines
administered in the province at the fixed and outreach, private or government sites are recorded in the
ZM-EIR.20 The ZM-EIR was first deployed in October 2017 and has been scaled up across all 30 districts
of Sindh province. As of July 31, 2023, it was used by 3,957 vaccinators working at 1,649 public and
314 private immunisation centres.

We use child-level data from both the seven program districts and five control districts: Karachi (East,
West, and Central), Kamber Shahdad Kot, Hyderabad, Jacobabad, Sujawal, Tharparker, Matiari, Sukkur,
Korangi and Malir.21 The analysis was run on 2.9 million children, with 34.5 million immunization
events recorded from July 01, 2019, to December 31, 2023.

The registry collects child-level information about the immunization history (detailing the administra-
tion dates and sites of first and subsequent antigens). Additionally, it captures information on child
and parental characteristics (gender, place and date of birth, maternal education, and language of the
caregiver), location (clinic, union council, town and district where the child received its first and all

19 The text message is sent by Zindage-Mehfooz reminding caregivers that their child is due for a vaccine tomorrow and they
should visit the EPI centre to get their child vaccinated. It also provides phone numbers that caregivers can use for further
information. The text messages did not specify the incentive amount because of concerns that caregivers might go to clinics
in nonprogram districts leading to complaints and accusations of corruption.

20 Only vaccines not recorded in the ZM-EIR are those administered by by non-regular EPI staff during targeted surge cam-
paigns or relief programs.

21 In accordance with our data use agreement with IRD, the researchers at University of Chicago’s access is limited to data
from 12 districts characterized by the lowest immunization coverage rates. These 12 districts exhibited lower vaccination
rates depending on the selected antigen and month. For instance, Hyderabad, Kamber, and Sujawal had a low level of
Pentavalent-3 and Measles-1 vaccines in the 2020 birth cohort, as documented by surviving annual infants in the Electronic
Immunization Registry of the Government of Sindh as of August 31, 2021.
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subsequent vaccines) and vaccinator characteristics.22 The registry only collects information about the
children who have been vaccinated; thus, it is not possible to directly calculate immunization rates,
which requires additional data on the population. However, the relevant population data is also subject
to dispute.

3.2 Outcomes

To avoid p-hacking, we pre-specified the number of children immunized for Pentavalent-1 and Measles-1
as our primary outcomes of interest. We selected an early vaccine (Penta-1) and a later vaccine (Measles-
1) in the schedule to capture the effect of the program on an increase in the number of children enrolled
and an increase in persistence through the schedule (more vaccines per child).23 Our secondary outcomes
include the number of children receiving other vaccines in the schedule (in logs).24 Other vaccines in
the schedule include (i) Bacille Calmette-Guérin (BCG), (ii) Pentavalent-2, (iii) Pentavalent-3 and (iv)
Measles-2 (though Measles-2 is not included in the definition of fully immunized child). While not
prespecified, we take the logarithmic transformation of vaccines administered as towns vary greatly in
size; thus, the estimated impact has a natural interpretation as the percentage change in vaccines due to
the program.25

3.3 Data Description and Estimation Challenges

The vaccination data between 2019 and 2022 from our study districts shows huge variation in the num-
ber of children immunized on a given day or month (Figure 2). For instance, the number of children
immunized in Kambar district in the 3rd week of May 2021 was 3,899, which is 4,700% higher than
the preceding week (which was Ramadan). Several large shocks explain variations. Some shocks are
common across districts, such as the delta wave in 2021 (before our sample period) and Ramadan. Other
shocks impact some districts more than others: for example, the floods of 2022 (which hit as the program
was being rolled out) and the vaccinator strike and subsequent outreach campaign in 2021. If we were to
use only the seven RCT districts in our estimation, it would be hard to tease out the effects of these shocks
from the impact of the program, as 2 of our 7 RCT districts were hit by the floods. However, several
control districts were also hit by floods (Chandir et al. 2023). While the data includes 34 million indi-
vidual immunization observations, there are only seven districts rolled in the program and, on average,

22 In adherence to our data use agreement with IRD, researchers only have access to data that excludes personal details such
as the child’s name, address, date of birth, national identity card, and vaccinator name.

23 The admin data ZM data does not provide comprehensive information on the total number of children between 0-23 months.
It only provides information on the immunized children. Thus, we can not calculate immunization rates.

24 We specified the number of children receiving Pentavalent-1 and Measles-1 vaccination as primary outcomes in the AEA
Social Science Registry Glennerster (2022) and present these results in section 4.1. The results for other vaccines are
presented in the online appendix.

25 The decision to roll in by town, not district, only occurred once the program had started, and thus, randomization by the
town was not in our pre-analysis plan. Towns vary much more by size than districts, which makes it even more important
to use logarithmic transformation.
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Figure 2: Total vaccines administered per month across districts

three to four towns per district. The entire randomized roll-in takes seven months, and the gap between
each town is one week. The qualitative evidence suggests that caregivers take time to learn about the
incentive, with many learning when they take their child for immunization. This will delay the response
to the program, especially for Measles vaccines, which are due at 9 and 15 months: a child born just after
the program starts will not complete their measles vaccines before the last town is rolled in. Similarly,
if a caregiver learns about the program in month 2, their child may not become eligible for their next
vaccine before the end of the roll-in. Without using the additional non-mCCT districts, there will be no
control districts left by the end of August 2022, and we will miss the response of many caregivers. If
information about the program diffuses gradually, the full impact will not be seen immediately.

3.4 Estimation Strategy: Combining Random and Quasi Random Variation

In this section, we discuss our estimation strategy for combining both randomized and non-randomized
variation in the roll-in of towns into the immunization incentive program. We start by setting out the
standard assumptions for estimating a randomized roll-in design (the no anticipation and common trend
assumptions) and the rationale that these will hold in our randomized sample. We then discuss the
methodology and assumptions needed to identify non-program districts for inclusion in our analysis.
Our key assumption is that there were many plausible selection algorithms that IRD could have chosen
to select the "seven program districts with the lowest levels of immunization", including focusing on dif-
ferent vaccines or undertaking the analysis at different times. We estimate the probability other districts

12



could have been included in the program (under a range of plausibly equivalently selection criteria) and
include as controls, those with non-zero probability of being included.26 Using the balancing property of
the propensity score (Rosenbaum and Rubin, 1983), we include inverse probability weights in our ATT
estimation to reflect the probabilities of being included in the incentive program. Throughout this sec-
tion, our unit of analysis is town by week, i.e. the log of the number of vaccines administered in a week
in a given town. We discuss how our clustering adjusts for two-level randomization (both district and
then within the district at the town level). In Section 4.3, we discuss our estimation strategy to exploit
individual-level data.

3.4.1 Assumptions for staggered event study

We estimate the effect of the program using Callaway and Sant’Anna (2021) to overcome the well-
documented negative weight issue when estimating difference-in-differences with staggered treatment
timing. Furthermore, the inverse probability weight approach outlined in Callaway and Sant’Anna (2021)
allows us to transparently account for site selection, discussed in Section 3.4.2.

We define the Average Treatment effect on the Treated (ATT ) for a town that rolls into treatment in first
period g at time t:

ATT (g, t) = E [Yt(g)− Yt(0)|Gg = 1]

To identify the ATT (g, t) the standard no anticipation assumption must hold:

E [Yt(g)|Gg = 1] = E [Yt(0)|Gg = 1] , ∀ t ≤ g

In our setting, this means that caregivers can not anticipate the roll-in of the program and thus are unlikely
to delay vaccination decisions until the program reaches their town.27

Moreover, the incentive payment of $1.25 dollars is sufficiently small that individuals are unlikely to find
it worthwhile to invest in finding out the exact timing of the roll-in in their communities and delay vacci-
nation of their child. Finally, qualitative evidence suggests many caregivers learned about the incentives
when they visited the centre for the first vaccines after the program rolled in. Thus, the assumption of no
anticipation is likely to hold in our case.

26 Given immunization rates are highly correlated across vaccines and auto-correlated over time, out of 30 possible districts,
only 5 could have been included in the RCT sample under alternative permutations of the criteria. Conditional on being
one of the 5 additional districts, the lowest probability of inclusion was 40%.

27 There was no public announcement or schedule of when districts and towns would be rolled in. Also, vaccinators only
knew about the program when they were trained for its implementation and it was rolled out immediately after the training.
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Additionally, the common trends assumption states that:

E [Yt(0)− Yt−1(0)|Gg = 1] = E [Yt(0)− Yt−1(0)|Ds = 0, Gg = 0]

for all roll-in dates, g, and pairs s, t where t ≥ g, t ≤ s must hold.

The parallel trend assumption is likely to hold for treated units as the treatment timing was randomized
at the district and then town level.

3.4.2 Inclusion of non-randomized districts

The assumption of unconditional parallel trends between program and non-program districts is a strong
assumption given the 27 non-program districts have mechanically higher Penta-3 and Measles-1 rates
than program districts in August 2021 by virtue of being selected for inclusion in the program. If levels
are correlated with changes then non-program districts might have systematically different immunization
trends than program districts. We address this in two ways: we confine our analysis to only a few non-
program districts that could have been selected under plausibly equivalent selection criteria; and we
adopt a conditional common trends assumption.

An unconditional common trends assumption assumes that the counterfactual untreated trend for those
in the experiment would have been the same for those in the experiment and not in the experiment. Given
our knowledge of the selection mechanism, this seems reasonable.

Since selection was based on immunization levels and the common trends assumption allows for dif-
ferential levels in Yt across towns, the unconditional common trends assumption above is sufficient to
identify the ATT . However, to be conservative and account for the possibility of correlation between
levels and trends we introduce the conditional common trends assumption, conditioning on the covariate
X:

E [Yt(0)− Yt−1(0)|X,Gg = 1] = E [Yt(0)− Yt−1(0)|X,Ds = 0, Gg = 0]

Traditionally, researchers collect and condition on a set of baseline covariates to ensure parallel trends
hold. Instead, we exploit our knowledge of the selection mechanism and balancing property of the
propensity score to condition directly on pg,t(X), the probability a town is first treated in period g at time
t.

IRD’s selection mechanism for the ‘high-risk districts for immunization’ was:

(i). Calculate crude coverage for 2020 birth cohort using ZM-EIR data dump generated on September
1st, 2021 and Government of Sindh data on annual live births/surviving infants.

(ii). Define a district below the 20th percentile of Penta-3 or Measles-1 district coverage rate as ‘high-

14



risk’.

Our identifying assumption is that any of a series of similar selection criteria (type of vaccine and date
of data dump) were equally likely to have been chosen. Specifically, that within a given vaccine category
(i.e. within BCG, Penta-1, Penta-2 or Penta-3, and within Measles-1 or Measles-2) and within up to 8
months of the actual selection date, the probability of selecting a specific antigen or date to calculate
the coverage rate used for the selection criteria is equally likely. We permute through all possible com-
binations of vaccines and dates and measure how often a given district is included in the experiment.
Averaging over all the permutations gives the probability a district is selected for the experiment.28 Fig-
ure 3 shows the probability a given district could have been included in the experiment across vaccine-
pairs, averaging over the data dump selection date. Whilst the 7 districts actually included in the mCCT
program have higher than average likelihood of inclusion (the 7 mCCT districts are denoted using bold
font), there are multiple districts, such as Matiari and Korangi, that are almost as likely as Karachi West,
Central, and East to have been selected for the programme but were not. In fact, Hyderabad, which is
included in the mCCT program, was the least likely district to enter the experimental sample of the 12
potential districts with positive inclusion probability.

Conditioning on the probability in this way directly accounts for the selection mechanism. Intuitively,
pg,t will be greater for districts with higher average pre-program vaccination rates.29 When one of the 7
districts in the sample that was actually chosen for the RCT has a higher pg,t, its treated outcomes will
be weighted more and untreated outcomes weighted less and vice versa. With pi,g,t in hand it’s possible
to calculate the inverse-propensity weighted ATT described by Callaway and Sant’Anna (2021):

ATT nyt(i, g, t) = E

 Gi,g

E[Gi,g]
−

pi,g,t(1−Di,t)(1−Gi,g)

1−pi,g,t

E
[
pi,g,t(1−Di,t)(1−Gi,g)

1−pi,g,t

]
 (Yi,t − Yi,g−1)


In our setting, pi,g,t enters directly into the sample analogue estimator, whereas conventionally pi,g,t(X)

will be calculated using a logistic regression of treatment status on covariates, X .

3.4.3 Summary parameters

In order to study treatment effect dynamics, we estimate the effect of participating in the treatment with
varying lengths of exposure to the program, e periods after treatment roll-in where e = t−g i.e. e captures
how many weeks have passed since a town first rolled into treatment at g. To ensure compositional shifts
in which towns have been treated for e periods do not introduce the illusion of treatment dynamics we

28 In the appendix we describe in greater detail how propensity scores are calculated using Algorithm 1.
29 To calculate the propensity a district is treated at a given time period, pg,t(X), we further permute over the inclusion algo-

rithm and our randomization procedure. Since districts have different numbers of towns, this introduces small differences
in pg,t across units so we index pi,g,t by town i and calculate the propensity score directly for each town.
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Figure 3: Probability a district is selected into experiment, by vaccine-pair averaging over selection date

Notes: This plot show the probability a district is in the lowest 20th percentile of coverage rates for a given vaccine-pair,
averaging over possible data dump generation dates. Bold text denotes the districts and vaccine-pair actually chosen for the
roll-out of the program.
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balance estimates using the longest possible time period for which all treated towns are observed, which
is 67 weeks using the last data dump.30 Event study estimates by length of exposure to treatment (e) is
given by:

Callaway and Sant’Anna (2021) as:

θes(e) =
∑
g∈G

1{g + e ≤ T }P (G = g|G+ e ≤ T )︸ ︷︷ ︸
ωes

ATT (g, g + e)︸ ︷︷ ︸
Effect e periods after g roll-in

(1)

Furthermore, to summarise the overall treatment effect of participating in the program, we estimate the
average effect for a town’s overall post-treatment periods given by:

θsel(g̃) =
1

T − g̃ + 1

T∑
t=g̃

ATT (g̃, t) (2)

where θsel(g̃) is the average effect of participating in the treatment among towns in group g̃ across all
post-treatment periods. We find the overall effect by first computing the average effect for each group
(across all time periods) and then averaging these together across groups. Thus, the overall effect of
participating in the program can be estimated using:

θoverall =
∑
g∈G

θsel(g)P (G = g|G ≤ T ) (3)

3.5 Inference

To calculate standard errors for our two stage randomization procedure, we use a modified multiplier
bootstrap which reflects our nested assignment: First, we draw a district-level random variate. Next, we
draw random variables at the town level, and finally we draw a correlation parameter that determines how
much weight is placed on the district level random shock. Our approach, inspired by Athey and Imbens
(2022), ensures the estimator of the variance-covariance matrix, V, fixes the distribution of adoption
dates. This design-based approach reflects the fact that, due to implementation requirements, regardless
of realised randomization order our experiment must roll-in one town per week. Therefore, we calculate
the empirical influence function as described by Callaway and Sant’Anna (2021):

30 The length of the exposure to the program varies for each town, which could potentially change the composition of groups
for each event time and length of exposure. To ascertain that our estimates do not suffer from the issue of compositional
changes, we use a balanced panel and aggregate the average treatment effect for towns that are exposed to the treatment for
at least some fixed number of time periods. If we do not impose a balanced panel when we compare the magnitude in the
coefficient between say week 5 and 10 we are changing both the lag but also which towns are included in the estimation.
One could imagine that requiring a balanced panel also means using only a specific set of towns rolled into the program for
our treatment estimates. However, in our case all towns have been rolled-in after seven months of implementation phase
and, thus, are part of the current estimations. This has been possible given the extensive nature of the data collected by the
the Government of Sindh.
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Ψ̂(Yi,t, Yi,g−1, Ggi) =
(
wtreat

g · (Yt − Yg−1)− wtreat
g · wtreat

g · (Yt − Yg−1)
)

−
(
wcontrol

g · (Yt − Yg−1)− wcontrol
g · wcontrol

g · (Yt − Yg−1)
)

and form a bootstrap draw, ÂTT (g, t)b = ÂTT (g, t) + V b

Ψ̂(·) where V b is generated as follows for each draw, b:

(i). For district d in 1, ..., D draw Xb
d ∼ N(0, 1).

(ii). For town t in 1, ..., T draw Y b
t ∼ N(0, 1).

(iii). Draw ρv ∼ U(−1, 1).

(iv). Generate Ṽ b = Y b
t + ρbXb

d

(v). Calculate V b = Ṽ b−Ṽ
b

σ
Ṽ b

By drawing ρb each bootstrap draw we allow for arbitrarily strong correlation within each district without
taking a stance on the level of correlation across towns within districts.31

3.5.1 Threats to Our Identifying Assumption

One objection to our identification assumption is that the choice of selection criteria (from the range of
similar potential criteria) was unlikely to be quasi random. It might have been driven by a specific ob-
jective either political (the criteria had to be one that included a particular "favored" district) or medical
(the vaccines chosen are of particular importance). To be a problem for our identification this unob-
served driver of selection would have to be correlated with trends in immunization, not just levels. For
example, if a politically favored district regularly gained additional resources this would impact levels
and not changes in immunization. To fail our conditional common assumption it would need to be re-
cently favored and suddenly receiving additional resources from both the incentive program and other
programs in a way that increased immunization at precisely the time of program roll-in. If the move to
favored status happened before the roll-in this would show up in nonparallel trends (see results). We
therefore judge this unlikely. However we explore the the possibilities by comparing the allocation of
other discretionary (immunization) resources across districts.

There is reason to think that all antigens are not equal and that public health colleagues may have strong
reasons to select the vaccines they did. For this reason our plausibly equivalent selection criteria involve
permuting within vaccine: for example varying whether the selection criteria is Penta-1 or Penta-3. We
draw comfort from the fact that while Penta-3 was chosen by IRD as the key vaccine for the selection

31 We standardise V b to ensure the bootstrap estimates are well behaved, see e.g. Shao and Tu (1995)
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criteria, Penta-1 was chosen as the primary outcome for this study because both are considered critical
vaccines. It is more plausible that Measles-1 had a higher chance of being in the selection criteria
than Measles-2 as Measles-2 is not required for the definition of full immunization. However, for our
conditional common trends to assumption to be violated it would need to be the case that districts that
performed worse on Measles-1 had a systematically different trajectory than those that performed worse
on Measles-2.

3.6 Shrinkage of ATT s

The Callaway and Sant’Anna procedure involves estimating multiple ATT s: approximately 1,500 ATT s
across 52 time periods and 29 groups. Whilst estimates are then aggregated into summary parameters,
which increases precision by averaging over multiple noisy estimates, each component of the summary
parameters still utilize a relatively small proportion of available information. For instance, the event study
aggregation only averages over 29 total ATT s for each event period e. The estimates for a given week
discard any information from surrounding weeks under the assumption that the impact of the program
at different time periods could be fully independent from each other. Since each ATT is essentially
a difference of means, applying well-known shrinkage estimators such as the James-Stein estimator is
relatively straight forward and attractive in this setting given the large number of estimated means to
regularise. Instead, we leverage understanding of the program to make additional assumptions to further
increase power whilst shrinking estimates. We assume there is a latent program impact measured with
noise in any one period and time since the event is the relevant distance measure (i.e. impacts close
together in time are more likely to be related than ones further in time) to derive much tighter estimates.

We estimate a hierarchical shrinkage model that pools information across ATT s using a Gaussian Pro-
cess (GP) prior to embed a notion of similarity across impacts in event time. Specifically, we estimate a
hierarchical shrinkage model with the following likelihood over latent ATT s:

ÂTT (g, t) ∼ N(ATT (g, t), se(ÂTT (g, t)))

ATT (g, t) ∼ GP(0, KATT (g − t, g′ − t′))

By using a hierarchical model over the latent, unknown ATT s we shrink estimates towards a global mean
depending on the pooling metric or signal-to-noise ratio. If se(ÂTT (g, t)) is relatively large compared
to the hierarchical variance, then the estimated ATT is shrunk towards the global mean. However, if
se(ÂTT (g, t)) is relatively small, then the estimated ATT is left relatively untouched.

We add additional structure to the shrinkage problem by embedding a notion of similarity between ATT s
by using the event time as a distance metric. The covariance kernel of the GP treats ATT s with similar
event times as more informative about each other than ATT s further away in event-time space. Since
both the ‘upper’, hierarchical likelihood and ‘lower’ likelihood are jointly estimated, rather than imposing
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how much each ATT is shrunk towards a common mean we estimate the hierarchical variance, which
measures how heterogeneous effects are across g, t, and use the data to inform the level of shrinkage for a
given ATT . Gaussian Processes are sometimes motivated using a ‘weight-space’ view which shows that
a GP with an exponential covariance kernel is akin to an infinite-dimensional basis function expansion
– our procedure can be interpreted as a purely non-parametric regularisation exercise. However, instead
of choosing a weighting function to aggregate ÂTT s we estimate a weighting function directly from
the data, depending on the trade-off between individual ÂTT sampling variation and how related latent
ATT s are in event-time space.32

4 Results

4.1 Conditioning on the Probability of Selection in Callaway and Sant’ Anna
method

4.1.1 Selection of Non-Randomized Control Districts and Propensity Scores

Figure A6 shows the estimated propensity scores for districts at g = {3, 10, 25} over 35 weeks. Orange
depicts the traditional logistic propensity score, which regresses treatment status on a constant when
no pre-treatment covariates are provided. The estimates in blue show the permuted propensity score,
accounting for the probability of inclusion into the program. Districts selected for inclusion in the mCCT
programme are depicted in bold above plot facets. For districts which had a low chance of being included
in the program, e.g. Hyderabad which has a probability of only 47%, the permuted propensity score is
lower for earlier gs - the district had a relatively low probability of being treated. In contrast, Sujawal
had a very high chance of being treated and therefore has a much higher propensity score on average.
Sujawal’s propensity score increases rapidly at later time periods because the probability of Sujawal
being a never treated district is low (only 6%). Figure 3 reinforces the finding in Figure 2 that while
included districts in general have a higher propensity to be in the RCT, there is variation with Hyderabad,
Kambar and Jacobabad (included districts) looking similar to many non-included districts and some non-
included districts (like Malarni) having similar propensities to many included districts.

4.1.2 Standard Callaway and Sant’Anna

We first show results for the standard Callaway and Sant’Anna difference-in-difference method on the
log of the number of vaccines for Pentavalent-1 and Measles-1 as the outcomes (Figures 4 and 5). Our
estimation includes five additional (non-treated) similar districts as a control group. We used a balanced
panel of 29 treated towns observed for at least 67 weeks post-programme roll-out. For the pre-period,
we use 20 weeks before the treatment. In the figures, red dots indicate pre-treatment estimates, and

32 In Appendix Table A4 we show results robust across an alternative, wider prior specification.
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blue represents post-treatment estimates. The orange dots indicate the overall average treatment effect
averaging across time.

Figures 4 and 5 show that our estimates are consistent with the parallel trends assumption, as the co-
efficients before the programme roll-out are close to zero and do not exhibit pretrends. Caregivers are
responsive to incentives; taking an average of post treatment effects, an incentive of 1.25 USD (PKR
200) induces a 14.0% (CI: [3.15, 26.90], p = 0.0128) increase in the number of Pentavalent-1 vaccines
in treated towns as compared to non-treated towns (average treatment effect over time represented by
the orange dot presented in figure 4). Similarly, Measles-1 shows a 15.5% increase (CI: [2.80, 28.1] ,
p = 0.0167). However, the individual time period estimates are very noisy and variable. Without the
additional districts the estimates are substantially noisier although consistent with our main specification
(Table A2). We also present results for other vaccines in the online appendix section A7 and find a
consistent positive and significant impact of the scale-up of the incentive for immunization program on
BCG, Pentavalent-2 and Pentavalent-3 vaccines.
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Figure 4: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna: Town-
level estimates for Pentavalent-1
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Figure 5: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna: Town-
level estimates for Measles-1

4.2 Shrinking Callaway Sant’Anna: Hierarchical Bayes Estimation

Our preferred estimation approach uses the hierarchical shrinkage to exploit the bias-variance trade-
off and improve precision (Figure 6 and 7). As above, we use a balanced panel with 67 weeks of
post-treatment data. Again, we see no pre-trends prior to the roll-in of the immunization incentive.
Immediately, following a town being rolled in we see a substantial jump in immunizations. Credibility
intervals around each weekly estimate are substantially smaller (averaging a span of 35% for Penta-1 and
36.5% for Measles-1 versus 71.1% and 68.1% respectively for the traditional Callaway and Sant’Anna
estimates) and the dynamics are much smoother suggesting a lot of the variation week to week in the
non-smoothed was due to noise rather underlying treatment effect heterogeneity. The average post treat-
ment effect is also more precisely estimated although of similar magnitude to the unsmoothed estimate.
Specifically we find the incentive increased Penta-1 immunizations by 14.59% (CI: [10.76, 18.66]) and
Measles-1 immunizations by 14.75% (CI: [10.57, 19.06]).

4.3 Leveraging due date by conditioning on those who can respond

In this section, we present our estimates for the impact of the CCTs programme on child vaccination
behaviour using extensive individual child-vaccine level data. We make use of immunization records to
construct a panel of child-week observations per vaccine for those who are enrolled in the SEIR registry.
We leverage the granularity of the data in two ways to improve the precision of our estimates and relax
the common trends assumption used previously.
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Firstly, we re-define treatment status for a given child as Dit = I{ti ≥ gi ∩ bi ≥ gi} where bi denotes the
week a child is due to be vaccinated – a child is now considered treated if they are both rolled into the
program and due to receive the vaccine of interest. Whilst changing the interpration of our estimand, this
increases the precision of our estimates. Without adjusting for the due-date of children would lead to an
attenuation of our effect since the ITT would average over many children who are technically treated
but not yet born, or not yet due to receive a vaccine. Our second innovation conditions on the week a
child is due to calculate a conditional ATT .

We use 26 million child-week observations per vaccine to calculate the ATT (g, t, b) – the effect of the
program for those first treated at g, at time t, who are due in week b. This ATT only compares children
across treatment and control who are due in the same week, relaxing the unconditional parallel trends
assumption. Since we only observe an individual’s vaccination status if they are in the SEIR system,
all our results should be interpreted as conditional effects. The child level ATT therefore gives the
probability of getting further vaccines in the schedule, conditional on having at least one vaccine. We
estimate the following specification:

ÂTT
ny
(g, t, b) =

1

Ng

Ng∑
i=1

∆1{Ggi = 1, B = b} − 1

Nnyt(g)

Nnyt(g)∑
i=1

∆1{nyt(g)i, B = b}

Where ∆ = Vi,t − Vi,g−1 denotes an individual’s i′s change in vaccination status at time t for those who
first got treated at g. Since we condition on B = b for both the treated and untreated difference our
estimates make use of a conditional parallel trends assumption – we only require common trends to hold
across districts for children with the same due-date. To aggregate back to a single ATT we calculate:
ATT (g, t) =

∑
b∈T ATTt(g, b)Pr(Bi = b). Since all our aggregations are just linear transformations

of ATT s we can calculate standard errors by likewise transforming the empirical influence function
discussed in Section 3.5.

We present results using individual-child level data for Pentavalent-1 and Measles-1 as outcomes in
figures 8 and 9 and for other vaccines in the schedule in the online appendix section A10. In line with
town-level estimates, our individual-level estimates don’t show any pretends before the programme roll-
out, and all the pre-treatment estimates are close to zero, satisfying the parallel trend assumption.

Conditional on the child’s enrollment in the SEIR databases, there is a significant rise in the likelihood
of receiving vaccination for Pentavalent-1 attributed to the implementation of the CCTs program. We
find estimates within the range of 0 to 0.035, an equivalent of a 3.56% increase in the likelihood of
receiving Pentavalent-1 vaccines attributable to the CCTs program. The findings suggest that individuals
enrolled in the registry demonstrate a greater likelihood of receiving the Pentavalent-1 vaccine earlier in
the schedule. Nevertheless, this effect shows a declining trend around 20 weeks and becomes statistically
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insignificant by approximately 26 weeks, as illustrated in Figure 8. The individual level estimates for
measles-1 indicate a significant increase due to the CCTs programme till week 5, but the effect diminishes
after that (presented in figure 9). Our individual-level estimates are in line with aggregated town-level
estimates (presented in section 4.1), though we find a smaller effect size. The results are also consistent
for other vaccines including Pentavalent-2 and Pentavalent-3 (presented in figures A14 and A15).
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are clustered at the district level, calculated using the wild cluster bootstrap.

Figure 8: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna:
Individual-level estimates for Pentavalent-1

4.3.1 Heterogeneity in Effects: Enroled in the programme versus new enrolled

In this section we decompose our effects by those who are already enrolled in the ZM system before
treatment begins, ‘always-takers’, and those who enrol after the program rolled in for their town, ‘late-
takers’.33 We estimate the average treatment effect for those treated at g at time t who are born in b and

33 These are a mix of ‘always-takers’ who would have taken the programme anyway, and ‘compliers’ who are induced into
the programme by the incentive. Without additional assumptions we cannot disentangle the two in the latter group.
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Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots) using individual child level data. The outcome variable is the log of the number of Measles-1
immunizations administered. We used a balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as

nevertreated units from additional, nonmCCT districts were used as a control group. We estimate 20 preperiods since
estimating more preperiods dramatically increases the standard errors in the preperiod. Red dots indicate pre-treatment

estimates, and blue indicates post-treatment estimates. The bars represent 95% percent confidence intervals. Standard errors
are clustered at the district level, calculated using the wild cluster bootstrap.

Figure 9: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna:
Individual-level estimates for Measles-1
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based on their enrolment using the following specification:

ÂTT
ny
(g, t, b, pre-enrol = a) =

1

Nga

Nga∑
i=1

∆1{Ggi = 1, B = b, pre-enrol = a}

− 1

Nnyt(g)

Nnyt(g)∑
i=1

∆1{nyt(g)i, B = b}, a = {0, 1}

Separating out treatment effects by enrolment status lets us determine whether the program successfully
incentivises pro-vaccine caregivers, who have already enrolled their children in ZM before they were
eligible for the cash incentive, to continue later into the vaccine schedule. Post-enrolment estimates give
a sense of how likely marginal caregivers are to persist in the ZM system once enrolled. We present
heterogeneous individual child-level results for Pentavalent-1 and Measles-1 (presented in figures 10
and 11). Each graph presents the heterogeneous treatment for the two groups, i.e., those who were
already enrolled in the system before the program started (represented by red dots) and those who were
enrolled in the system after the program rolled out, i.e., they are newly enrolled (represented by blue
dots). Our findings suggest that those who were enrolled in the system before the CCTs programme
was rolled experienced an increase in Pentavalent-1 uptake and they are more likely to persist by 15%.
As these children were already pro-vaccine and likely to receive timely vaccines, the program’s impact
diminished rapidly. Conversely, those who enrolled in the system after the program rollout exhibited a
sharp increase in Pentavalent-1 vaccinations due to the program. We find that the programme is able to
get these marginal children into the system but, they are less likely to persist after 25 weeks. Their initial
motivation appeared to be driven by the incentive to get vaccinated, but sustaining their engagement in
the system proved challenging.

In sum, our individual level analysis of heterogeneous treatment effect indicates that the scale up of the
CCTs programme led to a 15% increase in enrollment in the vaccination registry. We observe notable
heterogeneity among individuals, with marginal children induced to take first vaccine due to incentives
but they are much less likely to persist. On the other hand, those who are inherently pro-vaccine, cate-
gorized as always-takers and enrolling pre-treatment, exhibit a much higher likelihood of completing the
vaccination schedule.
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Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots) using individual child level data. The outcome variable is the log of the number of Pentavalent-1

immunizations administered. We used a balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as
nevertreated units from additional, nonmCCT districts were used as a control group. We estimate 20 preperiods since

estimating more preperiods dramatically increases the standard errors in the preperiod. Red dots indicate pre-treatment
estimates, and blue indicates post-treatment estimates. The bars represent 95% percent confidence intervals. Standard errors

are clustered at the district level, calculated using the wild cluster bootstrap.

Figure 10: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna:
Individual-level estimates for Pentavalent-1
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Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots) using individual child level data. The outcome variable is the log of the number of Measles-1
immunizations administered. We used a balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as

nevertreated units from additional, nonmCCT districts were used as a control group. We estimate 20 preperiods since
estimating more preperiods dramatically increases the standard errors in the preperiod. Red dots indicate pre-treatment

estimates, and blue indicates post-treatment estimates. The bars represent 95% percent confidence intervals. Standard errors
are clustered at the district level, calculated using the wild cluster bootstrap.

Figure 11: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna:
Individual-level estimates for Measles-1
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4.4 Robustness

4.4.1 Crossovers and Spillovers

One concern with the validity of our estimates would be if caregivers realized that program districts were
giving incentives and other districts were not and switched where they took their child to be immunized
as a result. This would push up vaccinations in program districts and down in control districts and would
give us a spurious positive impact of the program. We therefore tested to see whether the introduction
of the mCCT program was associated with an increase in the number of caregivers switching between
districts to benefit from the program. We find evidence of a slightly higher rate of switchers into program
districts than into non-program districts suggesting that some people do change the clinic they bring their
child to based on the payment. However the absolute numbers are very small and thus do not change
the magnitude of the estimated effect size. In Figure 12, we plot the weekly proportion of vaccines that
are ‘switches’ where a caregiver changes vaccination location between antigens for each type of switch.
The dashed line shows the level of switching we’d expect if caregivers randomly chose their switching
destination, using the pre-treatment rate of switching as a baseline rate.
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Figure 12: Fraction of Vaccines ‘Switches’ Between Districts
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5 Discussion

In this section, we elaborate on the extent to which our findings have the potential to inform our un-
derstanding of the scale-up of pilot projects and conditional cash transfer programme on immunization
today.

5.0.1 Sample and Prior Sensitivity

Another concern is that the districts least/extremely likely to be included in the RCT disproportionately
drive results due to the inverse propensity score rising to high levels by the end of the period in the
treatment/control terms respectively. To alleviate these concerns Appendix Figure A13 shows results are
robust to excluding each district in turn, using a leave-one-district-out specification.

In Appendix Table A4 we find the prior specification has little impact on posterior treatment effects. Our
main specification uses a conservative prior which places little density on regularising results more than
3 weeks apart. Appendix Table A4 shows results including a wider, less informative prior which spreads
density out over a much greater range of shrinkage values. We find that Penta-1 and Measles-1 results
are similar across both specifications: 15.17% (vs 13.86% for the conservative prior) and 13.59% (vs
13.47% for the conservative prior).

5.1 Validity Checks on Administrative Data

Another concern with the validity of our estimates is that they are based on administrative data which
might systematically overrepresent vaccinations in program districts. In particular, if the introduction of
the incentive program led vaccinators to create fake children or fake immunizations for real children in
order to collect the incentive, this would bias upward the estimated impact of the program. The extent of
fraud of this kind is limited by checks imposed by IRD which automatically flag, for further investigation
by their in house monitoring team, when multiple children are linked to one phone number.34 Nor can
vaccinators create multiple accounts to collect incentives for fake children: anti-money laundering/anti-
terrorist financing legislation makes it illegal to have more than five sim cards against one identity card.35

Nevertheless, to address concerns that the incentive leads to overreporting of number of children and
immunizations in program districts we contacted a random sample of phone numbers (from program and
non program districts) in the ZM database and a random sample of households with children under 3
years old in two of the program districts. The phone survey was designed to check whether the incentive

34 In total, 89% of phone numbers are not repeated for different children in the ZM database; 9.4% are repeated for 2 children;
1.3% are repeated for 3 children and 0.5% are repeated for 4 or more children. This is consistent with the number of people
who report sharing 1 phone number across multiple households in our household survey: 90% in Karachi East and 70%
in Kambar report not sharing a phone number across households, while 2% of households in Karachi East and 11% of
households in Kambar share phone numbers across 3 or more households.

35 A computerized national identification card and bio-metric verification for each sim card makes this rule hard to get around.
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had led to fake children being added to the register. The household survey tested whether additional
immunizations had been added to records of real children.

The phone survey was conducted between November 2022 and February 2024 and sought to contact
2,131 randomly selected phone numbers from ZM (1,903 from program districts and 228 in non-program
districts). The household survey was conducted in two program districts, one urban (Karachi East) and
one rural (Kambar), chosen for their representativeness. As the household survey was not conducted
in non program districts we cannot compare household survey findings from program and non program
districts.36 The household survey is completed with representative sample of 11,440 households.37

If a large number of fake accounts with phone numbers have been added to the ZM-EIR as a result of
the incentive we would expect to either get lower than usual pick-up rates to our phone calls, or a large
number of respondents reporting that they do not recognize the name of the child. These rates would
also be systematically different in program and non program districts. We find evidence that households
change phone number relatively frequently: the percent of successful calls declines the longer the time
since the child’s last vaccination and the percent of calls where the respondent does not recognize the
child increases over time. We therefore focus mainly on calls made within 60 days of a child’s most
recent vaccination (the first two panels in Table 1), though we show the result of all calls for transparency.
Surveys were successfully completed for 88% of randomly chosen phone numbers in program districts
for children vaccinated within the previous 30 days (76% for those vaccinated in the last 31-60 days), a
relatively high rate compared to other phone surveys we have conducted in Pakistan38 The success rate
is higher in program than non program districts for these time periods (p-value 0.027). We also find the
rate of "child not recognized" is similar in program (5.1%) and non program districts (6.1%) for children
vaccinated within 30 days and 7.5% in program vs 6.0% in non program for those vaccinated within
30-60 days. Overall, of 12 comparisons made between responses in program and non program districts
in Table 1, three have p-values below 5: in two case program districts perform worse (they have a higher
percentage of phones off in the 31-60 time period, and more child not recognized cases in 61-180 time
period) and in one program districts perform better (there are more successful calls in the 31-60 time
period).39 These data suggest that the incentive has not led to a large number of fake children being
added to the immunization registry as a result of the program which would undermine our estimate of
the impact of the program.

36 Kambar had an immunization rate in between that of the other two entirely rural districts and 95% of people speak the native
(Sindhi) language. Karachi East is completely urban and offers considerable ethnic diversity (with 12% of the population
speaking Sindhi language).

37 The household survey and phone survey were conducted as part of an assessment of the program for the funder and was
designed to corroborate the vaccination rate in these districts as well as check for signs of fake children or vaccines in the
ZM data and incentive disbursement.

38 In an ongoing study, Christina Brown and Maryiam Haroon contacted casual day labourers by phone after observing them
on a full-day construction site for three consecutive days and found a pickup rate of 64.5% in Pakistan.

39 The one case where the rates are very different in magnitude is child not recognized in the 61-180 time period. Here the
non program district finding is out of line with the trend of rising child not recognized the longer the period since the child
was vaccinated.
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Time
period District

Phone
off
(%)

p-value
Successful

calls
(%)

p-value
Child not

recognized
(%)

p-value N

0-30
nonmCCT

mCCT
0

1.14 1.000
82.14
88.03 0.357

6.12
5.11 1.000

56
142

31-60
nonmCCT

mCCT
4.25
10.90 0.054

64.89
76.10 0.027

5.97
7.53 0.829

94
431

61-180
nonmCCT

mCCT
20.51
16.24 0.345

62.82
63.38 1.000

1.92
12.52 0.001

78
1330

180+
nonmCCT

mCCT
24.53
20.98 0.457

47.83
48.22 1.000

18.67
24 0.226

115
591

Table 1: Phone survey results across mCCT and nonmCCT: Calls over time

For the household survey we used publicly available Union Council boundaries and satellite maps to
divide Union Councils into equal sized segments and randomly selected one segment per Union Council.
We conducted a census of all households within the selected segment. This listing was used to randomly
select households with children under the age of three for a household survey. Following the survey, we
matched surveyed households to the ZM (using QR codes on immunization cards and/or phone numbers).
In addition to other tests for the existence of discrepancies in ZM data, we matched the immunization
records collected from the household survey (from cards and caregiver recall) to the immunization record
for the same child in the electronic record. The objective was to test whether there was evidence of
systematic overreporting of immunizations of real children in ZM.

We are able to locate 68% of children from the household survey in the administrative data in Karachi
East (57% because they had their vaccination cards and an additional 11% from phone numbers). The
equivalent for Kambar is 54% (49% with vaccine cards). Among this subgroup we find a 91% match
in the vaccination record between the two, in other words both report the same number of vaccinations
in 91% of cases (see Appendix Section A6, Figure A7, and Figure A8). Where there is a mismatch,
there are cases of a vaccine being recorded in the household data and not in ZM and vice versa. On
average, BCG rates tend to be higher in household data than in ZM while other vaccines tend to be
higher in ZM than in the household survey. This could be the result of overreporting in ZM for non-
BCG vaccines or it could be that vaccinators do not record the vaccination on the card when they are
busy and include them in the registry later. It is worth noting that the high match rate is calculated on
a selected sample–i.e. those who we can find in the administrative data, often because they showed us
their vaccination card. Nevertheless we take these results as suggesting there is not a widespread practice
of adding fake vaccines to the records of real children. As the household survey was only conducted in
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program districts, we do not know if this match rate is higher in non-program districts40.

6 Conclusion

We present evidence from a scale up of a small incentive for immunization (known as mCCT) program
designed to provide a nudge to encourage the take up of childhood immunization in Pakistan. The
magnitude of the effect is large – a 14.6% increase in Penta-1 and 14.8% increase in Measles-1 vaccines.
The incentive for vaccination helped those who had at least one immunization for their child to persist
to receive subsequent vaccines and higher number of vaccines. It also brought a large number of new
children into the system who would otherwise have not enrolled through anyother vaccination program.

Our findings suggest that a large scale government program produces impacts on immunizations consis-
tent with the findings from evaluations of smaller scale, often researcher implemented, small conditional
incentives (Holla and Kremer, 2009; Morris et al., 2004; Gibson et al., 2017; Banerjee et al., 2010). A
review of the existing literature on small conditional transfers finds that payments of less than USD 3,
complemented with reminders increased full immunization coverage in Kenya by 8 percentage points
(4 percentage points versus SMS only) (Gibson et al., 2017), in-kind small transfers (in form of lentils
and a set of plates) costing less than 1 USD per immunization increased full immunization coverage in
India by 21 percentage points (Banerjee et al., 2010), small airtime CCTs of USD 0.5 per immunization
increased coverage by 17 full immunization coverage over baseline estimates in another RCT from India
(Banerjee et al., 2021) and food/medicine vouchers worth USD 2 doubled up-to-date DTP3 (Diphtheria,
Tetanus, Pertussis) coverage at 18 months in Pakistan (Chandir et al., 2010).

Our estimates of 14.6% for Pentavalent-1 and 14.8% for Measles-1 resulting from an incentive of USD
1.25 per immunization are close to, though somewhat higher than, those found in the pilot study (Chandir
et al. (2022), which finds results of 9.3% and 11.0% increases respectively). One reason a large scale,
government program might have larger impacts than a small scale pilot is that information about the
incentive could reach those caregivers who had not yet taken their child to receive any incentive. In
contrast, caregivers in Chandir et al. (2022) were only enrolled in the RCT if they brought their child for
an initial vaccine.

More broadly this study demonstrates the benefit of combining variation from a randomized control trial
with that from units outside the RCT when the selection criteria for inclusion in the randomized study
is known. Knowledge of the selection criteria allows researchers to exploit quasi random variation in
whether a unit ends up above or below a cutoff and thus is or is not included in an RCT (and thus a
program). This is particularly useful when evaluating the scale up of programs where an element of
randomization can be included but implementation priorities take precedence over the need for the ideal

40 In a separate study, we are enroling households into a new program and following the same process to match households
from household survey with ZM and find that the match rates are quite similar. The enrolment in the new program is done
by the research team
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evaluation. In this study, a separate on the ground validation of the administrative date was carried
out as part of the evaluation. However, similar evaluations could be carried out relying entirely on
administrative data at low cost. We see potential to use the methodology in this paper to rigorously
evaluate the roll out of large government programs with limited disruption and cost. The methodology
can also be used to improve the precision and generalizability of estimates in smaller scale RCTs where
administrative data is available for units outside the RCT.
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Appendix
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A1 Treatment Status by District

Figure A1: Treatment Status by District
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A2 Timeline of the roll-out
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Accessed Immunization RecordsJuly 2019
District 1: Karachi East26-January 2022
Jamshed Town25-January
Gulshan Town10-February
East - Gadap23-February
District 2: Karachi Central01-March 2022
Nazimabad01-March
New Karachi08-March
Liaquatabad14-March
North Nazimabad21-March
Gulberg28-March
District 3: Kambar01-April 2022
Warah04-April
Shahdadkot07-April
Miro Khan12-April
Nasirabad18-April
Qubo Saed Khan20-April
Sijawal25-April
Kamber27-April
District 4: Hyderabad01-May 2022
Hyderabad Rural04-May
Qasimabad11-May
Latifabad18-May
Hyderabad City25-May
District 5: Jacobabad01-June 2022
Thul07-June
Garhi Khairo16-June
Jacobabad28-June
District 6: Sujawal01-July 2022
Mirpur Bathoro06-July
Sujawal13-July
Shahbander20-July
Jati27-July
District 7: Karachi West01-August 2022
S.I.T.E02-August
West - Gadap11-August
Orangi24-August

Figure A2: Timeline for the rollout of the CCT programme
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A3 Vaccination Card and Reminders

Figure A3: Vaccination card

Figure A4: Vaccination card with QR code to update SEIR database

Figure A5: Reminder messages
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A4 Vaccination Schedule

Pakistan’s routine childhood immunization schedule includes the following vaccines to be administered
in 6 visits:

(i). First visit: Bacille Calmette-Guérin (BCG), Oral Polio Vaccine-0 (OPV) and Hepatitis-B at birth;

(ii). Second visit: Pentavalent-1, Rotavirus-1, Oral Polio Vaccine-1 Pneumococcal Conjugate Vaccine
(PCV)-1 at six-weeks;

(iii). Third visit: Pentavalent-2, Rotavirus-2, Oral Polio Vaccine-2 and Pneumococcal Conjugate Vaccine-
2 at 10 weeks;

(iv). Fourth visit: Pentavalent-3, Oral Polio Vaccine-3, Pneumococcal Conjugate Vaccine-3, Inactivated
Polio Vaccine (IPV)-1 at fourteen weeks;

(v). Fifth visit: Typhoid conjugate vaccine (TCV), Measles–Rubella-1, Inactivated Polio Vaccine-2 at
nine months;

(vi). Sixth visit: Measles–Rubella-2 vaccine at 15 months.
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Algorithm 1 pi,g,t Algorithm
1: Input: Set of dates DATES, set of vaccines V ACCINES, coverage rates matrix COV ERAGE

with rows representing districts and columns representing vaccines, and a list of towns within each
district.

2: Output: Record of treatment for each town at each roll-in date.
3: for all dates d in DATES do
4: for all vaccine pairs v in V ACCINES do
5: Permute through date d and vaccine v
6: Calculate 20% threshold coverage rate Cthreshold for vaccine pair v and data dump generation

date d
7: Find districts D<20% with coverage rates < Cthreshold

8: for all district D in D<20% do
9: Randomize order of district roll-in

10: Randomize order of towns within district D
11: for all roll-in dates g ∈ G do
12: for all time periods t ∈ T do
13: for all town i in districts D<20% do
14: return Record treatment status, Hs

igt, for permutation s, town i, roll-in date g, at time
t.

15: end for
16: end for
17: end for
18: end for
19: end for
20: end for
21: Calculate: pi,g,t = 1

S

∑S
s=1H

s
igt
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A5 Propensity Score Examples

Karachi East District Karachi Central District Karachi West District Sujawal District

Jacobabad District Tharparkar District Korangi District Matiari

Hyderabad District Malir District Sukkur District Kambar District
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Figure A6: Comparison of Propensity Scores, Accounting for Selection vs Unadjusted
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A6 Vaccination matches

We used the household survey data and matched it with SEIR data to link the vaccination records. We
started by matching on QR codes when households had their vaccination card and then moved to match
on phone numbers when households gave us phone numbers. There are several reasons why caregivers
might be unable to provide their child’s vaccination card: they could be misplaced, discarded, or the
caregivers might be unwilling or unable to fetch the card. After linking the two datasets, we check to see
if vaccination records are the same in the household survey as they are in the SEIR database. Reasons
of lack of a perfect match include households forgetting about some vaccines (when match is on phone
number) and vaccinators not putting vaccines into the system because the internet was down when the
child was vaccinated, or the clinic was too busy and they forget afterwards. Using the subset of obser-
vations from the household survey matched through QR codes and (separately) those matched on phone
numbers, we calculate the consistency between the household survey (relying on vaccination cards), and
the SEIR records, at the individual vaccination level.
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Figure A7: Matching individual vaccines between household survey and SEIR
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Figure A8: Matching individual vaccines between household survey and SEIR
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A7 Town-level Estimates: Callaway and Sant’ Anna method for
other vaccines with 5 additional districts as control

In this section, we present our estimations using the Callaway and Sant’Anna (2021) difference-in-
difference method to estimate the impact of mCCTs with the log of the number of other vaccines, includ-
ing Bacille Calmette-Guerin, Pentavalent-2, Pentavalent-3, and Measles-2 (presented in figures A9, A10,
A11 and A12). Our estimates allow us to compare outcomes in a treated town after the roll-out for 1, 2,
3, etc. weeks, to outcomes in control towns where the programme has not yet been rolled out. For the
estimations, we used seven treatment districts and five additional control districts to estimate the impact
of the programme on immunization. Our estimations use a balanced panel of 29 treated towns observed
for at least 67 weeks post-programme roll-out. We use 20 weeks before the treatment roll-out for the
pre-programme period. In all estimations, we find that before the roll-out, our estimates do not exhibit
pretrends and are consistent with parallel trend assumption (presented in figures A9 to A12). The CCT
programme increased immunization for BCG by 15.94%, Pentavalent-2 by 9.82%, and Pentavalent-3
by 5.91%. The estimates show an initial increase in BCG with an overall increase of 13.14 percentage
points. Our BCG estimates are also close to those of Chandir et al. (2022) from the pilot study (presented
in figure A9). Additionally, Pentavalent-2 estimates show an overall increase of 6.68 percentage points
in the number of vaccines due to the programme. The impact on Pentavalent-2 is also less than those
found in the pilot study (Chandir et al., 2022). The overall increase in Pentavalent-3 is 3.4 percentage
points due to the mCCT programme roll-out. However, on average, the estimates are close to zero over
time, with a negative impact in a few weeks. Lastly, the overall impact of Measles-2 is negative by 0.3
percentage points, though the coefficient is small and close to zero. We summarise the overall effects in
Table A1.

∆N Vax
(%)

∆Vax Rate
MICS (ppt)

∆Vax Rate
EPI (ppt)

∆N Vax
N Vaccines, 52 wks

BCG
15.94

(10.8, 21.03)
13.14

(8.9, 17.33)
10.18

(6.9, 13.43)
63,395

(45,897, 78,739)

Penta-1
14.59

(10.76, 18.66)
10.95

(8.08, 14.02)
9.17

(6.77, 11.73)
57,895

(44,539, 71,178)

Penta-2
9.82

(6.21, 13.37)
6.68

(4.23, 9.11)
5.57

(3.52, 7.58)
30,183

(19,652, 40,820)

Penta-3
5.91

(1.4, 10.19)
3.4

(0.81, 5.87)
3.14

(0.74, 5.43)
10,628

(-2,746, 22,967)

Measles-1
14.75

(10.57, 19.06)
9.25

(6.63, 11.95)
7.76

(5.56, 10.02)
52,196

(39,546, 64,666)

Measles-2
-0.58

(-0.58, -0.58)
-0.3

(-0.3, -0.3)
-0.23

(-0.23, -0.23)
1,240

(-12,967, 14,970)

Table A1: CS Estimates - All Vaccines w/ Additional Districts

In sum, our findings for other vaccines in the schedule, including BCG, Pentavalent-2, Pentavalent-3, and
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Measles-2, suggest that the mCCT programme had a positive and significant impact on other vaccines,
which are earlier in the schedule, but as we move towards later vaccines, the estimate is close to zero and
negative in the case of Measles-2.
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Town level estimates measured in weeks, using additional districts as controls, balanced composition using 67 periods

 Event Study: Difference in bcg log n vaccinated in treatment vs control.

Event study estimated using 1,429,648 observed vaccination doses aggregated to the town−week level using Callaway and Sant'Anna (2021).
Standard errors clustered at the district level, calculated using the wild cluster bootstrap. Red points indicate pre−treatment estimates,

blue points post−treatment. 23 towns used as never−treated units from additional, non−mCCT districts. Balanced event study only uses 29
towns treated for at least 67 weeks. Lighter, horizontal dashed line indicates estimates from Chandir et al. 2022. Darker, horizontal dashed

line indicates no treatment effect.

Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots). The outcome variable is the log of the number of Bacille Calmette-Guerin immunizations

administered. We used a balanced panel for 29 towns treated for at least 67 weeks. 23 towns used as nevertreated units from
additional, nonmCCT districts were used as a control group. We estimate 20 preperiods since estimating more preperiods
dramatically increases the standard errors in the preperiod. Red dots indicate pre-treatment estimates, and blue indicates

post-treatment estimates. The orange dot indicates the average treatment effect averaging across time. The gray dashed line
shows the estimated impact found in Chandir et al. (2022) for Pentavalent-3. The estimates are derived using 1,153,253

vaccinations observed at the individual level and aggregated to the town-week level. The bars represent 95% percent
confidence intervals. Standard errors are clustered at the district level, calculated using the wild cluster bootstrap.

Figure A9: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna: Town-
level estimates for Bacille Calmette-Guerin
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Town level estimates measured in weeks, using additional districts as controls, balanced composition using 67 periods

 Event Study: Difference in penta2 log n vaccinated in treatment vs control.

Event study estimated using 1,345,427 observed vaccination doses aggregated to the town−week level using Callaway and Sant'Anna (2021).
Standard errors clustered at the district level, calculated using the wild cluster bootstrap. Red points indicate pre−treatment estimates,

blue points post−treatment. 23 towns used as never−treated units from additional, non−mCCT districts. Balanced event study only uses 29
towns treated for at least 67 weeks. Lighter, horizontal dashed line indicates estimates from Chandir et al. 2022. Darker, horizontal dashed

line indicates no treatment effect.

Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots). The outcome variable is the log of the number of Pentavalent-2 immunizations administered. We

used a balanced panel for 29 towns treated for at least 67 weeks. 23 towns used as nevertreated units from additional,
nonmCCT districts were used as a control group. We estimate 20 preperiods since estimating more preperiods dramatically
increases the standard errors in the preperiod. Red dots indicate pre-treatment estimates, and blue indicates post-treatment

estimates. The orange dot indicates the average treatment effect averaging across time. The gray dashed line shows the
estimated impact found in Chandir et al. (2022) for Pentavalent-3. The estimates are derived using 1,095,705 vaccinations

observed at the individual level and aggregated to the town-week level. The bars represent 95% percent confidence intervals.
Standard errors are clustered at the district level, calculated using the wild cluster bootstrap.

Figure A10: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna: Town-
level estimates for Pentavalent-2
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Town level estimates measured in weeks, using additional districts as controls, balanced composition using 67 periods

 Event Study: Difference in penta3 log n vaccinated in treatment vs control.

Event study estimated using 1,402,430 observed vaccination doses aggregated to the town−week level using Callaway and Sant'Anna (2021).
Standard errors clustered at the district level, calculated using the wild cluster bootstrap. Red points indicate pre−treatment estimates,

blue points post−treatment. 23 towns used as never−treated units from additional, non−mCCT districts. Balanced event study only uses 29
towns treated for at least 67 weeks. Lighter, horizontal dashed line indicates estimates from Chandir et al. 2022. Darker, horizontal dashed

line indicates no treatment effect.

Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots). The outcome variable is the log of the number of Pentavalent-3 immunizations administered. We

used a balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as nevertreated units from additional,
nonmCCT districts were used as a control group. We estimate 20 preperiods since estimating more preperiods dramatically
increases the standard errors in the preperiod. Red dots indicate pre-treatment estimates, and blue indicates post-treatment

estimates. The orange dot indicates the average treatment effect averaging across time. The gray dashed line shows the
estimated impact found in Chandir et al. (2022) for Pentavalent-3. The estimates are derived using 1,137,541 vaccinations

observed at the individual level and aggregated to the town-week level. The bars represent 95% percent confidence intervals.
Standard errors are clustered at the district level, calculated using the wild cluster bootstrap.

Figure A11: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna: Town-
level estimates for Pentavalent-3
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Town level estimates measured in weeks, using additional districts as controls, balanced composition using 67 periods

 Event Study: Difference in measles2 log n vaccinated in treatment vs control.

Event study estimated using 1,068,098 observed vaccination doses aggregated to the town−week level using Callaway and Sant'Anna (2021).
Standard errors clustered at the district level, calculated using the wild cluster bootstrap. Red points indicate pre−treatment estimates,

blue points post−treatment. 23 towns used as never−treated units from additional, non−mCCT districts. Balanced event study only uses 29
towns treated for at least 67 weeks. Lighter, horizontal dashed line indicates estimates from Chandir et al. 2022. Darker, horizontal dashed

line indicates no treatment effect.

Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots). The outcome variable is the log of the number of Measles-2 immunizations administered. We used a

balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as nevertreated units from additional, nonmCCT
districts were used as a control group. We estimate 20 preperiods since estimating more preperiods dramatically increases
the standard errors in the preperiod. Red dots indicate pre-treatment estimates, and blue indicates post-treatment estimates.

The orange dot indicates the average treatment effect averaging across time. The gray dashed line shows the estimated
impact found in Chandir et al. (2022) for Pentavalent-3. The estimates are derived using 864,321 vaccinations observed at
the individual level and aggregated to the town-week level. The bars represent 95% percent confidence intervals. Standard

errors are clustered at the district level, calculated using the wild cluster bootstrap.

Figure A12: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna: Town-
level estimates for Measles-2
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A8 Town-level Estimates: Callaway and Sant’Anna estimates with-
out shrinkage

Specification Vaccine Change in # Vaccinated (%)

CS estimates - no shrinkage BCG
0.16

(-0.01, 0.33)

CS estimates - no shrinkage Penta-1
0.15

(0.03, 0.27)

CS estimates - no shrinkage Penta-2
0.08

(-0.02, 0.18)

CS estimates - no shrinkage Penta-3
0.05

(-0.06, 0.16)

CS estimates - no shrinkage Measles-1
0.15

(0.03, 0.28)

CS estimates - no shrinkage Measles-2
0.05

(-0.14, 0.24)

Table A2: CS Estimates - All Vaccines w/ Additional Districts: No Shrinkage Model

Notes:
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A9 Town-level Estimates: Empirical Bayes Gaussian Process Prior
for all vaccines

∆N Vax
(%)

∆Vax Rate
MICS (ppt)

∆Vax Rate
EPI (ppt)

∆N Vax
N Vaccines, 52 wks

BCG
15.94

(10.8, 21.03)
13.14

(8.9, 17.33)
10.18

(6.9, 13.43)
63,395

(45,897, 78,739)

Penta-1
14.59

(10.76, 18.66)
10.95

(8.08, 14.02)
9.17

(6.77, 11.73)
57,895

(44,539, 71,178)

Penta-2
9.82

(6.21, 13.37)
6.68

(4.23, 9.11)
5.57

(3.52, 7.58)
30,183

(19,652, 40,820)

Penta-3
5.91

(1.4, 10.19)
3.4

(0.81, 5.87)
3.14

(0.74, 5.43)
10,628

(-2,746, 22,967)

Measles-1
14.75

(10.57, 19.06)
9.25

(6.63, 11.95)
7.76

(5.56, 10.02)
52,196

(39,546, 64,666)

Measles-2
-0.58

(-0.58, -0.58)
-0.3

(-0.3, -0.3)
-0.23

(-0.23, -0.23)
1,240

(-12,967, 14,970)

Table A3: CS Estimates - All Vaccines w/ Additional Districts: Shrinkage Model

Notes:
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Prior Estimation Specification Balanced Balanced
Post Duedate Impact

Balanced
Post-2 wk Impact

Balanced
Post-4 wk Impact

Balanced
Post-8 wk Impact

Unbalanced

BCG

Conservative Prior (default) Adding 5 control districts
16.86

( 12.54, 21.12)
17.32

( 12.80, 21.75)
17.19

( 12.68, 21.52)
17.32

( 12.80, 21.75)
17.39

( 12.66, 22.04)
17.32

( 13.39, 21.24)

Wide Prior Adding 5 control districts
17.66

( 13.22, 22.23)
17.70

( 13.28, 22.41)
17.68

( 13.24, 22.39)
17.70

( 13.28, 22.41)
17.67

( 13.10, 22.42)
17.60

( 13.24, 22.04)

Penta-1

Conservative Prior (default) Adding 5 control districts
13.86

( 10.66, 17.11)
14.32

( 10.96, 17.78)
14.08

( 10.80, 17.35)
14.17

( 10.95, 17.58)
14.42

( 10.99, 18.02)
15.70

( 12.76, 18.83)

Wide Prior Adding 5 control districts
15.17

( 11.71, 18.75)
15.40

( 11.93, 19.08)
15.26

( 11.73, 18.85)
15.30

( 11.91, 18.97)
15.50

( 11.91, 19.17)
15.94

( 12.97, 19.08)

Penta-2

Conservative Prior (default) Adding 5 control districts
6.37

( 3.86, 8.84)
6.62

( 4.12, 9.23)
6.48

( 4.03, 9.03)
6.62

( 4.12, 9.23)
6.97

( 4.37, 9.74)
7.97

( 5.77, 10.31)

Wide Prior Adding 5 control districts
6.52

( 3.95, 9.22)
7.01

( 4.33, 9.71)
6.80

( 4.22, 9.51)
7.01

( 4.33, 9.71)
7.37

( 4.66, 10.16)
8.17

( 5.63, 10.64)

Penta-3

Conservative Prior (default) Adding 5 control districts
1.51

( -1.25, 4.25)
1.71

( -1.10, 4.47)
1.59

( -1.22, 4.35)
1.71

( -1.10, 4.47)
2.00

( -0.83, 4.84)
3.94

( 1.51, 6.35)

Wide Prior Adding 5 control districts
1.82

( -0.79, 4.52)
2.31

( -0.54, 5.10)
2.12

( -0.69, 4.87)
2.31

( -0.54, 5.10)
2.75

( -0.22, 5.62)
4.02

( 1.66, 6.59)

Measles-1

Conservative Prior (default) Adding 5 control districts
13.47

( 10.14, 17.02)
14.75

( 10.57, 19.06)
13.67

( 10.19, 17.31)
13.86

( 10.37, 17.57)
14.19

( 10.55, 18.03)
16.49

( 13.33, 19.71)

Wide Prior Adding 5 control districts
13.59

( 9.92, 17.18)
14.66

( 10.42, 18.77)
13.74

( 9.98, 17.47)
13.88

( 10.20, 17.61)
14.16

( 10.52, 18.02)
16.49

( 13.18, 19.86)

Measles-2

Conservative Prior (default) Adding 5 control districts
-0.66

( -4.29, 3.06)
2.67

( -1.99, 7.50)
-0.55

( -4.29, 3.19)
-0.45

( -4.34, 3.31)
-0.14

( -4.09, 3.83)
1.63

( -1.81, 5.05)

Wide Prior Adding 5 control districts
-0.50

( -4.20, 3.13)
2.87

( -1.52, 7.30)
-0.15

( -3.93, 3.53)
0.11

( -3.72, 3.73)
0.60

( -3.30, 4.31)
1.70

( -1.80, 5.03)

Table A4: Robustness to Prior Choice

Notes: This table shows shrinkage results are robust to using a much wider prior for the length parameter of the Gaussian Pro-
cess. Results are also robust across various specifications for calculating the post-impact effect, shown by different columns.
Point estimates show posterior means whilst parentheses denote 95% credibility intervals.
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Figure A13: Robustness: Leave One District Out

A10 Individual-level Estimates: Callaway and Sant’ Anna method
for other vaccines

We estimate our model using individual child-level data for other vaccines in the schedule to find the
impact of CCT programme. We present these results for Pentavalent-2 and Pentavalent-3 in figures
A14 and A15. For both Pentavalent-2 and Pentavalent-3, the preperiod estimates are close to zero and
satisfy the parallel trend assumption. The individual level estimates show that the CCT programme has
an impact on Pentavalent-2 vaccines in the range of 0 to 0.047 and a similar impact on Pentavalent-
3 between 0 to 0.048. The effect is positive and statistically significant, with a 4.969% increase in
Pentavalent-2 vaccines in 20th week. Our estimates for Pentavalent-2 and Pentavalent-3 are consistent
with those found for Pentavalent-1 (presented in section 4.3).
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Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots) using individual child level data. The outcome variable is the log of the number of Pentavalent-2

immunizations administered. We used a balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as
nevertreated units from additional, nonmCCT districts were used as a control group. We estimate 20 preperiods since

estimating more preperiods dramatically increases the standard errors in the preperiod. Red dots indicate pre-treatment
estimates, and blue indicates post-treatment estimates. The estimates are derived using xx vaccinations observed at the
individual level. The bars represent 95% percent confidence intervals. Standard errors are clustered at the district level,

calculated using the wild cluster bootstrap.

Figure A14: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna:
Individual-level estimates for Pentavalent-2
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Notes: The figure displays the event-study plots constructed from difference in difference using (Callaway and Sant’Anna,
2021) method (in dots) using individual child level data. The outcome variable is the log of the number of Pentavalent-3

immunizations administered. We used a balanced panel for 29 towns treated for at least 52 weeks. 23 towns used as
nevertreated units from additional, nonmCCT districts were used as a control group. We estimate 20 preperiods since

estimating more preperiods dramatically increases the standard errors in the preperiod. Red dots indicate pre-treatment
estimates, and blue indicates post-treatment estimates. The estimates are derived using xx vaccinations observed at the
individual level. The bars represent 95% percent confidence intervals. Standard errors are clustered at the district level,

calculated using the wild cluster bootstrap.

Figure A15: Event Study estimates from Difference in Difference using Callaway and Sant’ Anna:
Individual-level estimates for Pentavalent-3
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