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Abstract

I describe an adaptive trial algorithm that jointly learns experimental participant pref-
erences and treatment effects across multiple outcomes. By aggregating treatment effects
using estimated marginal rates of substitution I can adaptively assign participants to treat-
ment arms to maximise welfare and not just some feature of the outcome vector. Finally, by
randomising participants into their preferred choice or alternative choices I directly observe
both the average treatment effect on the treated (ATT) and average treatment effect on the
untreated (ATU) vectors which cannot usually be uncovered by conventional randomised
control trials.

1. Introduction

Field experiments in development economics often observe multiple, common outcomes
across treatment arms and must identify an optimal arm for a policymaker. However, with-
out knowledge of individual’s preferences they cannot map changes in outcomes to changes
in welfare. Therefore, economists using adaptive trials typically maximise a single outcome
or some standardised index. Taking such a decision seriously implies the economist’s im-
posed utility function reflects participants’ preferences and these preferences only depend
on one feature of the outcome vector. Alternatively, using a standardised index implies par-
ticipants value the marginal value of a variance weighted good equally across outcomes1.
Instead, I propose an algorithm that jointly learns participant preferences and treatment
arm effectiveness. Aggregating across the two leads to estimates of posterior welfare which
can be used to adaptively assign participants to the welfare-optimal arm.

Moving from experimenter’s preferences to trial participants’ introduces several compli-
cations. A rich literature in economics, pyschology, and experimental fields more generally
demonstrate the importance of designing mechanisms such that participants are incentivised
to reveal their true preferences (Savage, 1971; Delavande, 2014). When the decision maker
and experimenter are one and the same, incentives are clearly aligned and stated preferences
can be treated as the ground truth. However, when the experimenter must learn participant
preferences he/she must account for the possibility of strategic behaviour and “cheap talk”.
Therefore, my work differs from Lin et al. (2022) and methods outlined by (Furnkranz and
Hullermeier, 2010) by proposing an incentive compatible preference elicitation step. I in-
centivise participants to tell the truth by allowing individuals to rank treatment arms and
assigning individuals to arms with a probability concordant with their stated preferences.

Finally, this paper seeks to further embed the principles of the Belmont report in ran-
domised control trials run by development economists and other researchers. By enshrining
participant preferences at the center of randomised trials, my proposed algorithm speaks
directly to respect for persons; beneficence; and justice as outlined by the report. Respect
for participants and their preferences, who in development economics often reside in low-
income countries, is particularly important in a field dominated by rich, US-based academics

1. For a static example see Ashraf et al. (2010); Blattman et al. (2017); Bandiera et al. (2017)
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(Stansbury and Schultz, 2022) running trials on those with little agency, income, or human
capital.

2. Setup and Method

The experimenter faces a vector of outcomes Yi =
[
y1i y2i ... yji

]′
for individual i and

must determine the optimal treatment arm k with associated J-length reward vector µk =[
µ1k µ2k ... µjk

]′
. Individuals arrive in waves of size Nt. Participant’s utility functions are

parametrised using McFadden (1973)’s discrete choice random utility model2: Uk = Vk + εk
where Uk corresponds to the utility an individual receives from treatment arm k with
Vk = γ1µ

1
k + γ2µ

2
k + ...+ γjµ

j
k = µkγ

′.

Algorithm 1 Treatment and structural participant preference estimation

Generate a prior (Q0, F0,Π0) over
(
µk,γ, (µ0, τ

−1
0 )
)

for t = 1, ..., T do
if ei < αt, ei ∼ U(0, 1) then

Elicit participant priors, µ0, τ
−1
0 , using BRS and update Πt

end if
Sample νt ∼ Qt−1(·|pt−1k , Y t−1) and inform each participant of a single µk(νt) draw
Observe participant rankings, Kt, and update Ft(·|Kt,µk(νt)) given Πt

Sample ωt ∼ Ft(·|Kt,µk(νt)),νt ∼ Qt−1(·|pt−1k , Y t−1),u ∼ U(0, 1)

Choose pk = 1
Nt

∑Nt
n=1 I{µk(νt)γ(ωt)

′ > µl(νt)γ(ωt)
′}, k 6= l

Assign participants to treatment arm k with probability pk using a strategy proof
mechanism

Observe Yt and update the posterior Qt(·|pt−1k , Y t) over µk.
end for

Each wave, the experimenter chooses a subsample to elicit participants’ priors over
treatment arm effectiveness and samples Nt draws, or signals, from the joint posterior
of treatment arm effects. Next, the experimenter individually informs participants of a
set of menus over expected outcomes, comprised of the private signals drawn previously,
and asks individuals to rank menus. Estimating a rank-ordered discrete choice model of
rankings on signals and normalising estimated coefficients by the first signal coefficient
gives the marginal rate of substitution across signals about outcomes. Unfortunately, this
complicates identification somewhat as we must disentangle how much an individual values
an additional unit of an outcome from their private information, i.e. how sceptical they are
about outcome signals. Estimating an auxillary model using the prior subsample allows the
experimenter to separate prior scepticism from preferences over outcomes.3

Incentive compatibility is ensured by using a strategy proof mechanism with probability
of arm assignment increasing in participant rankings. One example would be the random
serial dictatorship mechanism whereby participants are randomly ordered from 1 to Nt,
assign the first participant their first choice, the next participant their top choice amongst
the remaining choices, and so on. Each treatment arm accepts remaining participants until

2. Any non/semi/fully-parametric choice model could be used here.
3. In the interest of brevity, I skip details of this procedure for the extended abstract. Alternatively, the

experimenter may elicit posterior beliefs directly using a binarised scoring rule, although this cost may
be prohibitive in many field settings.

Finally, it may be possible to discretize the unobserved private information using subsequent ob-
served outcomes and identify posteriors over outcomes using moment conditions derived from partici-
pants’ rankings.
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their assignment proportion, pk, is reached. With rankings and participant posteriors in
hand the experimenter estimates a rank-ordered logit, updating Ft.

To calculate assignment probabilities the experimenter draws from the treatment effect,
Qt−1, and discrete choice model posterior, Ft, to generate µk(νt),γ(ωt) draws. Taking the
linear combination of these draws, µk(νt)γ(ωt)

′, gives posterior arm welfare and pk is chosen
using probability matching in proportion to the probability an arm’s welfare is highest.
Finally, the experimenter assigns participants to treatment arms, observes Yt and updates
their treatment effect posterior, Qt. By jointly estimating the treatment and preference
posterior, the modified Thompson sampling algorithm balances the exploitation-exploration
tradeoff by assigning participants to treatment arms reflecting uncertainty across both arm
effectiveness and preference uncertainty.

3. A Simulated Example

Suppose we face three treatment arms and measure three outcomes for each participant.
Participants enter the trial in batches of 100 over 10 rounds. Let µ1 =

[
1 2 −3

]
, µ2 =[

2 1 −3
]
, µ3 =

[
0 0 3

]
. That is, the first treatment arm has treatment effect one for

Y1, two for Y2, and negative three for Y3. The second treatment arm has treatment effect
two for Y1, one for Y2, and negative three for Y3. The final treatment arm has no effect
apart from increasing Y3 by three units. Let the population MRS across outcomes be given
by γ below. Whilst µ1 and µ2 are just permutations of each other, participants would prefer
to receive treatment two since they value Y2 twice as much as Y1. In fact, as the extreme
case of arm three demonstrates, even with such a large increase in outcome three, this arm
is dominated by the other arms since consumers don’t value Y3 at all. Arm utility is given
by V:

µ =

1 2 −3
2 1 −3
0 0 3

 , γ =
(
1/2 1 0

)
V = µγ′ =

(
2.5 2 0

)′

Figure 1a shows assignment proportions and estimated marginal rates of substitution after
each round of a simulated bandit problem. Individual errors are drawn N(0, 52). The
algorithm quickly uncovers preferences across outcomes, shown in the lower left panel. In
the upper left panel, the third treatment arm, which corresponds to 0 “welfare”, is swiftly
ignored. After a few more rounds arm three, which only returns four-fifths the utility of the
first arm, is no longer played as frequently. In Figure 1b I plot posterior arm utility over
rounds. Whilst uncertain, it’s clear even by round one that arm three is sub-optimal. As
more participants are observed in arms one and two posterior utility becomes less uncertain
and arm one starts to pull ahead of arm two.
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(a) Treatment Assignment and Posterior Median
Marginal Rates of Substitution (b) Posterior Utility Over Time

Figure 1: A Simulated Example Using Algorithm 1

4. Monte-Carlo Simulation Results

Table 1 shows results from 100 Monte Carlo draws using 15 rounds of 100 participants
per wave with four treatment arms and three outcomes to aggregate across. Simulation
parameters are drawn from:

γ ∼ N(0, I3),µk ∼ N(0, I3), k = 1, ..., 4

ηi ∼ N(0, 1), εki ∼ T1EV

where ηi, εki represent participant-level outcome and ranking errors respectively. Models
are estimated in Stan (Carpenter et al., 2017).

Table 1: Monte-Carlo Results

Assignment Type Pr(Optimal Arm) Mean Welfare Rank

Estimated 0.95 1.28
Random Assignment 0.87 3.06
Equal 0.39 2.74
First 0.30 2.92

Assignment type “Estimated” corresponds to Algorithm 1 outlined above and identifies
the optimal arm by the end of the trial 95% of the time. In contrast, static random assign-
ment only identifes the optimal arm in 87% of draws. “Equal” corresponds to Thompson
sampling maximising a standardised index of the three outcomes whilst “First” only targets
the first element of the outcome vector to maximise. Since I use a closed form solution for
participant utility, using the multinomial logit and generated γ parameters, I calculate av-
erage welfare across participants within a simulated draw and rank each algorithm, denoted
by “Mean Welfare Rank”. As expected, Algorithm 1, which estimates participant pref-
erences directly produces the greatest mean welfare for participants whilst static random
assignment the lowest.

4



5. Conclusion

By carefulling incentivising research trial participants, I’ve shown how to estimate partici-
pant preferences and aggregate treatment effects across disparate outcomes to estimate of
treatment arm welfare. By adaptively assigning participants using posterior welfare, rather
than posterior outcomes, researchers can conduct adaptive trials that identify the optimal
arm whilst maximising the welfare of participants using their own loss function and not one
imposed by the economist. Simulation results show the experimental design and adaptive
algorithm are able to detect the optimal arm more often, and in-sample welfare is higher,
compared with conventional alternatives. A small MTurk trial is currently in pilot.
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